Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Water Sci Technol ; 86(6): 1402-1425, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2054681

ABSTRACT

Wastewater-based epidemiology (WBE) has been employed by many countries globally since the beginning of the COVID-19 pandemic in order to assess the benefits of this surveillance tool in the context of informing public health measures. WBE has been successfully employed to detect SARS-CoV-2 at wastewater treatment plants for community-wide surveillance, as well as in smaller catchments and institutions for targeted surveillance of COVID-19. In addition, WBE has been successfully used to detect new variants, identify areas of high infection levels, as well as to detect new infection outbreaks. However, due to to the large number of inherent uncertainties in the WBE process, including the inherent intricacies of the sewer network, decay of the virus en route to a monitoring point, levels of recovery from sampling and quantification methods, levels of faecal shedding among the infected population, as well as population normalisation methods, the usefulness of wastewater samples as a means of accurately quantifying SARS-CoV-2 infection levels among a population remains less clear. The current WBE programmes in place globally will help to identify new areas of research aimed at reducing the levels of uncertainty in the WBE process, thus improving WBE as a public health monitoring tool for future pandemics. In the meantime, such programmes can provide valuable comparisons to clinical testing data and other public health metrics, as well being an effective early warning tool for new variants and new infection outbreaks. This review includes a case study of sampled wastewater from the sewer network in Dublin, Ireland, during a peak infection period of COVID-19 in the city, which evaluates the different uncertainties in the WBE process.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , Wastewater , Wastewater-Based Epidemiological Monitoring
2.
Sci Total Environ ; 838(Pt 2): 155828, 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-1852047

ABSTRACT

SARS-CoV-2 RNA quantification in wastewater is an important tool for monitoring the prevalence of COVID-19 disease on a community scale which complements case-based surveillance systems. As novel variants of concern (VOCs) emerge there is also a need to identify the primary circulating variants in a community, accomplished to date by sequencing clinical samples. Quantifying variants in wastewater offers a cost-effective means to augment these sequencing efforts. In this study, SARS-CoV-2 N1 RNA concentrations and daily loadings were determined and compared to case-based data collected as part of a national surveillance programme to determine the validity of wastewater surveillance to monitor infection spread in the greater Dublin area. Further, sequencing of clinical samples was conducted to determine the primary SARS-CoV-2 lineages circulating in Dublin. Finally, digital PCR was employed to determine whether SARS-CoV-2 VOCs, Alpha and Delta, were quantifiable from wastewater. No lead or lag time was observed between SARS-CoV-2 wastewater and case-based data and SARS-CoV-2 trends in Dublin wastewater significantly correlated with the notification of confirmed cases through case-based surveillance preceding collection with a 5-day average. This demonstrates that viral RNA in Dublin's wastewater mirrors the spread of infection in the community. Clinical sequence data demonstrated that increased COVID-19 cases during Ireland's third wave coincided with the introduction of the Alpha variant, while the fourth wave coincided with increased prevalence of the Delta variant. Interestingly, the Alpha variant was detected in Dublin wastewater prior to the first genome being sequenced from clinical samples, while the Delta variant was identified at the same time in clinical and wastewater samples. This work demonstrates the validity of wastewater surveillance for monitoring SARS-CoV-2 infections and also highlights its effectiveness in identifying circulating variants which may prove useful when sequencing capacity is limited.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Ireland/epidemiology , RNA, Viral , SARS-CoV-2/genetics , Wastewater/analysis , Wastewater-Based Epidemiological Monitoring
3.
Water ; 14(2):225, 2022.
Article in English | MDPI | ID: covidwho-1625679

ABSTRACT

Wastewater surveillance is a cost-effective tool for monitoring SARS-CoV-2 transmission in a community. However, challenges remain with regard to interpretating such studies, not least in how to compare SARS-CoV-2 levels between different-sized wastewater treatment plants. Viral faecal indicators, including crAssphage and pepper mild mottle virus, have been proposed as population biomarkers to normalise SARS-CoV-2 levels in wastewater. However, as these indicators exhibit variability between individuals and may not be excreted by everyone, their utility as population biomarkers may be limited. Coprostanol, meanwhile, is a bacterial metabolite of cholesterol which is excreted by all individuals. In this study, composite influent samples were collected from a large- and medium-sized wastewater treatment plant in Dublin, Ireland and SARS-CoV-2 N1, crAssphage, pepper mild mottle virus, HF183 and coprostanol levels were determined. SARS-CoV-2 N1 RNA was detected and quantified in all samples from both treatment plants. Regardless of treatment plant size, coprostanol levels exhibited the lowest variation in composite influent samples, while crAssphage exhibited the greatest variation. Moreover, the strongest correlations were observed between SARS-CoV-2 levels and national and Dublin COVID-19 cases when levels were normalised to coprostanol. This work demonstrates the usefulness of coprostanol as a population biomarker for wastewater surveillance studies.

4.
Sci Total Environ ; 805: 149877, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1370681

ABSTRACT

Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in wastewater can potentially provide an early warning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA in wastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly when the incidence of SARS-CoV-2 in wastewater is low. Corrective and confirmatory actions must be in place for inconclusive results or results diverging from current trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases.


Subject(s)
COVID-19 , Pandemics , Humans , Prospective Studies , RNA, Viral , Reproducibility of Results , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
5.
Water Res ; 201: 117090, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1157782

ABSTRACT

The introduction of SARS-CoV-2 containing human stool and sewage into water bodies may raise public health concerns. However, assessment of public health risks by faecally contaminated water is limited by a lack of knowledge regarding the persistence of infectious SARS-CoV-2 in water. In the present study the decay rates of viable infectious SARS-CoV-2 and SARS-CoV-2 RNA were determined in river and seawater at 4 and 20°C. These decay rates were compared to S. typhimurium bacteriophage MS2 and pepper mild mottle virus (PMMoV). Persistence of viable SARS-CoV-2 was temperature dependent, remaining infectious for significantly longer periods of time in both freshwater and seawater at 4°C than at 20°C. T90 for infectious SARS-CoV-2 in river water was 2.3 days and 3.8 days at 20°C and 4°C, respectively. The T90 values were 1.1 days and 2.2 days in seawater at 20°C and 4°C, respectively. In contrast to the rapid inactivation of infectious SARS-CoV-2 in river and sea water, viral RNA was relatively stable. The RNA decay rates were increased in non-sterilised river and seawater, presumably due to the presence of microbiota. The decay rates of infectious MS2, MS2 RNA and PMMoV RNA differed significantly from the decay rate of SARS-CoV-2 RNA, suggesting that their use as surrogate markers for the persistence of SARS-CoV-2 in the environment is limited.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Rivers , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL